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Abstract

Using the convex model theory, the vibration control problem of structures with uncertain parameters is
discussed, which is approximated by a deterministic one. A method for estimating the upper and lower
bounds of eigenvalues of the closed-loop systems is presented by combining the matrix perturbation and
optimization. The present method is applied to a vibration system to illustrate the application. The
numerical results show that the present method is effective.
r 2003 Published by Elsevier Ltd.

1. Introduction

The vibration control theory for systems with deterministic parameters has been well
developed. For example, Refs. [1–3] developed the standard methods for vibration control, and
Refs. [4,5] discussed the modal controllability/ observability and modal optimal control for
defective/near defective systems with repeated/close eigenvalues.
However, in actual situations, the structural parameters are often uncertain, such as the

inaccuracy of the measurement, errors in the manufacturing process, invalidity of some
components, etc. Therefore, the uncertain concept plays an important role in the control problem
of the vibration structures. Many studies have been done about the control problems only from
the viewpoint of mathematics. For example, Refs. [6,7] discussed the sufficient and necessary
conditions of the dynamic stability for the uncertain systems; Refs. [8,9] discussed the robustness
of control systems with uncertain parameters; Ref. [10] discussed the stability of an uncertain
matrix.
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The most common methods for solving uncertainty problems are to model the structural
parameters as a random vector. Unfortunately, the probabilistic approaches cannot give reliable
results unless sufficient experimental data are available to validate the assumptions about the joint
probability densities of the random variables or functions involved. Recently, the convex model
has been used to deal with the uncertainty problems in robust analysis of control systems and
structural failures. For instance, Ben-Haim and Elishakoff [11] and Lindberg [12] used the convex
model to study the dynamic response and failure of structures with pulse loads. Shi and Gao used
the convex model to solve the robustness of control system [13].
In this paper, the convex model is used to deal with the control problems of systems with

uncertain parameters. The uncertainties of the structural parameters are described by an ellipsoid.
The control problems of the uncertain systems are transformed into ones of the deterministic
systems. At first, by using the method of pole allocation, the state feedback gain matrix of the
systems with deterministic parameters can be obtained, and then it is applied into the actual
uncertain systems. By combining the convex model of the parameters with the perturbation
method, the expressions for estimating the upper and lower bounds of the real and imaginary
parts of the eigenvalues of the closed-loop systems can be developed. A numerical example is
given to illustrate the application of the approach presented in this study.

2. The definition of the problem

Consider the linear vibration control equation in state space

’xðtÞ ¼ AxðtÞ þ BuðtÞ: ð1Þ

By using the state feedback law, the input vector is

uðtÞ ¼ GxðtÞ; ð2Þ

where xðtÞ is the 2n � 1 state vector, uðtÞ is an m � 1 input vector, A is the 2n � 2n state matrix, B

is a 2n � m input coefficient matrix, G is an m � 2n state feedback gain matrix.
The state matrix A and input coefficient matrix B of the uncertain system can be expressed as

A ¼ A0 þ DA;

B ¼ B0 þ DB; ð3Þ

where A0 and B0 are the deterministic parts of the state matrix and the input coefficient matrix,
respectively; DA and DB are the uncertain parts of the state matrix and the input coefficient
matrix, respectively. Correspondingly, the uncertain state vector x; the uncertain gain matrix G

and the uncertain input vector u are

x ¼ x0 þ Dx;

u ¼ u0 þ Du;

G ¼ G0 þ DG; ð4Þ

where x0; u0 and G0 are the deterministic parts of the state vector, the input vector and the gain
matrix. Dx; Du and DG are their uncertain parts, respectively.
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Substituting Eqs. (3) and (4) into Eqs. (1) and (2) yields

’x0 þ D ’x ¼ ðA0 þ DAÞðx0 þ DxÞ þ ðB0 þ DBÞðu0 þ DuÞ ð5Þ

and

u0 þ Du ¼ ðG0 þ DGÞðx0 þ DxÞ: ð6Þ

Expanding Eqs. (5) and (6), we have

’x0 þ D ’x ¼ A0x0 þ A0Dx þ DAx0 þ DADx þ B0u0 þ B0Du þ DBu0 þ DBDu ð7Þ

and

u0 þ Du ¼ G0x0 þ G0Dx þ DGx0 þ DGDx: ð8Þ

Neglecting the higher orders of the above Eqs. (7) and (8), and equating the coefficients of the
same orders of the left and the right sides, we obtain

’x0 ¼ A0x0 þ B0u0;

u0 ¼ G0x0 ð9Þ

and

D ’x ¼ A0Dx þ DAx0 þ B0Du þ DBu0;

Du ¼ G0Dx þ DGx0: ð10Þ

From the above discussion it can be seen that the uncertain system (1) and (2) have been
separated into the deterministic part (9) and the uncertain part (10). The closed-loop system
corresponding to the deterministic system (9) is

’x0ðtÞ ¼ ðA0 þ B0G0Þx0ðtÞ ð11Þ

and the corresponding eigenvalue problem is

l0u0 ¼ ðA0 þ B0G0Þu0: ð12Þ

3. The gain matrix of the deterministic system [3,14]

In the pole allocation method, to guarantee asymptotic stability, the closed-loop poles can be
selected in advance and the gains are determined so as to produce these poles. Thus, when the
closed-loop eigenvalues of Eq. (11) are assigned to be l�1 ; l

�
2 ;y; l�2n; by using the pole allocation,

the gain matrix G0 of the deterministic system (9) can be determined.
First, we transform Eq. (9) into the control equation in modal co-ordinates. Suppose the left

and the right modal matrices U0 ¼ ½u1; u2;y; u2n� and V0 ¼ ½v1; v2;y; v2n� have been obtained.
They satisfy the following equations:

VT
0A0U0 ¼ K0; VT

0U0 ¼ I; ð13Þ

where K0 ¼ diagðl01; l02;y; l02nÞ is the diagonal matrix of the eigenvalues of the deterministic
system.
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With the modal transformation

x0ðtÞ ¼ U0nðtÞ; ð14Þ

the Eq. (9) can be transferred into

’nðtÞ ¼ K0nðtÞ þ B0
0u0ðtÞ ð15Þ

and

u0ðtÞ ¼ G0
0nðtÞ: ð16Þ

If the single input is used, B0 is a column vector, G0 is a row vector. Let

B0
0 ¼ VT

0B0 ¼ ðb0
1; b

0
2;y; b02nÞ

T; G0
0 ¼ G0U0 ¼ ðg0

1; g
0
2;yg0

2nÞ ð17Þ

and substituting Eq. (16) into Eq. (15), one has

’nðtÞ ¼ ðK0 þ B0
0G

0
0ÞnðtÞ: ð18Þ

In Eq. (18), suppose the assigned eigenvalues are l�i ði ¼ 1; 2y; 2nÞ; the corresponding
eigenvectors are wi ði ¼ 1; 2y; 2nÞ; and they satisfy the following eigenproblem:

ðK0 þ B0
0G

0
0Þwi ¼ l�i wi ði ¼ 1; 2;y; 2nÞ ð19Þ

i.e.

ðK0 þ B0
0G

0
0 	 l�i IÞwi ¼ 0 ði ¼ 1; 2;y; 2nÞ: ð20Þ

Because wia0; then there exists

detðK0 þ B0
0G

0
0 	 l�i IÞ ¼ 0: ð21Þ

Solving Eq. (21), we obtain

g0
i ¼

Q2n
k¼1ðl

�
k 	 l0iÞ

b0
i

Q2n
k¼1
kai

ðl0k 	 l0iÞ
; i ¼ 1; 2;y; 2n ð22Þ

thus obtaining the matrix G0
0 ¼ ðg01; g

0
2;y; g0

2nÞ:
From Eq. (14), we obtain

nðtÞ ¼ VT
0x0ðtÞ: ð23Þ

Substituting Eq. (23) into Eq. (16) yields

u0ðtÞ ¼G0
0V

T
0x0ðtÞ

¼G0x0ðtÞ; ð24Þ

where

G0 ¼ G0
0V

T
0 : ð25Þ

If the deterministic gain matrix G0 is applied to the uncertain system, there must exist some
errors between the closed-loop eigenvalues and the assigned eigenvalues l�i ði ¼ 1; 2;y; 2nÞ: By
combining the convex model of the uncertain parameters with the perturbation method, the
expressions for computing the upper and lower bounds of the closed-loop eigenvalues li ði ¼
1; 2;y; 2nÞ can be developed.
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4. The convex model theory [11,15]

The method of describing the uncertainties by convex set is called convex model, which does not
need precise information and is used broadly.
If the uncertainty a is confined to a convex set O; i.e. aAO; where the elements of the vector a

are values or functions. Thus O is the convex model of the uncertainty a: The several common-
used convex models are listed as follows:
(1) The maximum bound convex model:

OMB ¼ faðtÞARr : jajðtÞjp%aj; j ¼ 1;y; rg; ð26Þ

where %aj; j ¼ 1;y; r are constants.
(2) The integral energy bound convex model:

OIEB ¼ aðtÞARr :

Z T

0

aTðtÞaðtÞ dtpE2

� �
; ð27Þ

where E is a positive real constant.
(3) The local energy bound convex model:

OLEB ¼ faðtÞARr : ½aðtÞ 	 %aðtÞ�T½aðtÞ 	 %aðtÞ�pr2ðtÞg; ð28Þ

where %aðtÞ is a vector function, and r2ðtÞ is a energy bound.
(4) The ellipsoidal convex model:

OELP ¼ faðtÞARr : aTWapy2g; ð29Þ

where a is the uncertain parameter vector, W is the symmetric positive weighted matrix, y is a
given positive real constant. The convex model means that all the uncertain parameters are
constrained into the N-dimension ellipsoid.
In the following, the uncertainties of the parameters are described by Ellipsoid Convex Model

(29). By combining the convex model of uncertainties with perturbation theory [15] to estimate the
upper and lower bounds of the real and imaginary parts of closed-loop eigenvalues of the actual
uncertain system is developed.

5. Upper and lower bounds of eigenvalues of the closed-loop systems

According to the convex model theory presented above, if the uncertain parameters are denoted
by aj; the uncertain state matrix can be written as

A ¼ A0 þ
Xm

j¼1

ajAj; ð30Þ

where A0 is the state matrix with deterministic parameters; m is the number of uncertain
parameters; Aj is the jth state sub-matrix. According to the convex model theory, aj satisfy

aTWapy2; a ¼ ða1; a2;y; amÞ
T; ð31Þ

where y is a given positive real constant; W is a symmetric positive weighted matrix; a is a real
constant vector.
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Applying the state feedback gain matrix obtained above to the system with uncertainties, then
the closed-loop system is

’xðtÞ ¼ A0 þ
Xm

j¼1

ajAj þ BG0

 !
xðtÞ: ð32Þ

Here, we assume the input coefficient matrix is deterministic. i.e., B0 ¼ B:
By using the following notations:

A0 þ BG0 ¼ C;Xm

j¼1

ajAj ¼ DC; ð33Þ

Eq. (32) becomes

’xðtÞ ¼ ðC þ DCÞxðtÞ; ð34Þ

From Section 3, we know that the eigenvalues of the matrix C are the assigned eigenvalues l�i
(i ¼ 1; 2;y2n). And the corresponding eigenvalue problem is

CU ¼ UK�; CTW ¼ WK�: ð35Þ

In engineering design, the situation involving small uncertainties is often considered. According
to the perturbation theory [16], the eigenvalues of the closed-loop system can be expressed as

li ¼ l�i þ cT
i ðDCÞji

¼ l�i þ cT
i

Xm

j¼1

ajAj

 !
ji

¼ l�i þ
Xm

j¼1

ajðc
T
i AjjiÞ

¼ l�i þ aTAi ði ¼ 1; 2y; 2nÞ; ð36Þ

where a ¼ ða1; a2;y; amÞ
T; Ai ¼ ðcT

i A1ji;c
T
i A2ji;y;cT

i AmjiÞ
T; ci and ji are the ith left and the

ith right modal vectors of C; respectively.
Because the eigenvalues of the system are complex, the upper and lower bounds of the real and

the imaginary parts of the closed-loop eigenvalues will be discussed, respectively.
Suppose

li ¼ di þ fij;

l�i ¼ d�i þ f �i j;

Ai ¼ Di þ Fij;

i ¼ 1; 2;y; 2n; j ¼
ffiffiffiffiffiffiffi
	1

p
; ð37Þ

where di and fi are the real and imaginary parts of li; respectively; d�i and f �i are the real and
imaginary parts of l�i ; respectively; Di and Fi are the real and imaginary parts of Ai; respectively.
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Substituting Eq. (37) into Eq. (36) yields

di þ fij ¼ d�i þ f �i jþ aTðDi þ FijÞ

¼ d�i þ aTDi þ ð f �i þ aTFiÞj: ð38Þ

By letting the real and imaginary parts of the left side and equating the counterparts of the right
side of Eq. (38), respectively, we can obtain

di ¼ d�i þ aTDi; i ¼ 1; 2;y2n; ð39Þ

fi ¼ f �i þ aTFi; i ¼ 1; 2;y2n: ð40Þ

In the following, the expressions of the extremums of the real and imaginary parts of the closed-
loop eigenvalues will be given.
When the uncertain parameters, a; vary including the bound described by the ellipse (31), by

using the technique of optimization, the approximate extremums of the real and imaginary parts
of the eigenvalues can be determined.

ðdiÞmax ¼ maxfd�i þ aTDig;

ðdiÞmin ¼ minfd�i þ aTDig;

ð fiÞmax ¼ maxf f �i þ aTFig;

ð fiÞmin ¼ minf f �i þ aTFig;

i ¼ 1; 2;y; 2n: ð41Þ

According to the convex model theory, the extremums of (39) and (40) will occur on the
boundary of the ellipsoid described by Eq. (31) [17], we obtain

Sðy;WÞ ¼ fa : aTWa ¼ y2g: ð42Þ

By using the Lagrange multiplier method, the Lagrangian functions can be obtained

H1 ¼ di þ t1ðaTWa 	 y2Þ ¼ d�i þ aTDi þ t1ðaTWa 	 y2Þ; ð43Þ

H2 ¼ fi þ t2ðaTWa 	 y2Þ ¼ f �i þ aTFi þ t2ðaTWa 	 y2Þ; ð44Þ

where t1 and t2 are the Lagrange multipliers.
The necessary conditions for the extremums of H1 and H2 are

@H1

@a
¼ Di þ 2t1Wa ¼ 0;

@H2

@a
¼ Fi þ 2t2Wa ¼ 0: ð45Þ

Hence we have

a ¼ 	
W	1Di

2t1
; ð46Þ

a ¼ 	
W	1Fi

2t2
: ð47Þ
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Substituting Eqs. (46) and (47) into Eq. (42) yields

2t1 ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DT

i W	1Di

q
y

; ð48Þ

2t2 ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FT

i W	1Fi

q
y

: ð49Þ

Substituting Eq. (48) into Eq. (46), a can be obtained when the real parts of the eigenvalues take
the extremums, i.e.

a ¼ 7
yW	1Diffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DT

i W	1Di

q : ð50Þ

Substituting Eq. (50) into Eq. (39), The upper and lower bounds of the real parts of the
eigenvalues can be obtained as follows:

ðdiÞmax ¼ d�i þ y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DT

i W	1Di

q
;

ðdiÞmin ¼ d�i 	 y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DT

i W	1Di

q
; i ¼ 1; 2;y; 2n: ð51Þ

The similar expressions for the imaginary parts of the eigenvalues can be obtained as follows:

ð fiÞmax ¼ f �i þ y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FT

i W	1Fi

q
;

ð fiÞmin ¼ f �i 	 y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FT

i W	1Fi

q
; i ¼ 1; 2;y; 2n: ð52Þ

And the corresponding a is

a ¼ 7
yW	1Fiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FT

i W	1Fi

q : ð53Þ

From Eqs. (51) and (52), it can be seen that the uncertainties of the real and imaginary parts of
the eigenvalues will increase as the uncertainties of the parameters increase.

6. Numerical example

In order to illustrate the application of the present method, a numerical example is given as
follows.
Consider a vibration control system shown in Fig. 1. An input force is imposed on m2: Assume

that the mass coefficients m1 and m2 are deterministic, and the stiffness coefficients of springs, k1
and k2; have some errors in the manufacturing process. k1 and k2 can be expressed as k1 ¼
ð1þ a1Þk; k2 ¼ ð1þ a2Þk; where k is a constant, a1 and a2 are used to describe the errors, i.e., the
uncertain parameters in Eqs. (29) and (31). Assume m1 ¼ 1; m2 ¼ 2; and k ¼ 1:
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The mass matrix is deterministic

M ¼
m1 0

0 m2

" #
¼

1 0

0 2

" #
:

The stiffness matrix of the system with uncertain parameters is

K ¼
k1 þ k2 	k2

	k2 k2

" #
¼

k1 0

0 0

" #
þ

k2 	k2

	k2 k2

" #
¼

2k 	k

	k k

" #
þ a1

k 0

0 0

" #
þ a2

k 	k

	k k

" #

¼K0 þ a1K1 þ a2K2;

where

K0 ¼
2k 	k

	k k

" #
; K1 ¼

k 0

0 0

" #
; K2 ¼

k 	k

	k k

" #
:

Suppose the state vector is

xðtÞ ¼ q1ðtÞ q2ðtÞ ’q1ðtÞ ’q2ðtÞ
 �T

:

Then the state matrix of the system is

A ¼
0 I

	M	1K 0

" #
¼

0 I

	M	1K0 0

" #
þ a1

0 0

	M	1K1 0

" #
þ a2

0 0

	M	1K2 0

" #

¼A0 þ a1A1 þ a2A2;

where

A0 ¼
0 I

	M	1K0 0

" #
; A1 ¼

0 0

	M	1K1 0

" #
; A2 ¼

0 0

	M	1K2 0

" #
:

The state matrix with uncertain parameters can be expressed as

A ¼ A0 þ a1A1 þ a2A2;

where A0 is the state matrix with deterministic parameters, A1 and A2 are the state sub-matrices
corresponding to the uncertain parameters a1 and a2; respectively.
In the computation, we assume that

W ¼
1 0

0 1

" #
;
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m1 m2

q1(t) q2(t)
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Fig. 1. The vibration control system.
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i.e.

a21 þ a22py2:

The eigenvalues of A0 are

l01 ¼ 1:51022i; l02 ¼ 	1:51022i; l03 ¼ 0:46821i; l04 ¼ 	0:46821i:

If the frequencies of the system are unchanged, and only the damping of the system is assigned,
that is the real parts of the eigenvalues of the system can be assigned as 	0:50000: Using Eq. (25),
the state feedback gain matrix for the system with deterministic parameters can be obtained

G0 ¼ 4:62500 	3:00000 2:00000 	4:00000
 �

:

If G0; the feedback gain matrix, is applied to the actual system with uncertain parameters, the
closed-loop eigenvalues will has some perturbations. Using Eqs. (51) and (52), the upper and
lower bounds of the real and imaginary parts of the eigenvalues of the closed-loop system with
uncertain parameters are obtained and listed in Tables 1 and 2 with different values of y; where
Rðl1;2Þ denotes the real part of the first and second eigenvalues; Iðl1;2Þ the imaginary part of
the first and second eigenvalues; Rðl3;4Þ the real part of the third and fourth eigenvalues; Iðl3;4Þ the
imaginary part of the third and fourth eigenvalues.
The curves of upper and lower bounds of eigenvalues are shown in Figs. 2–5 where RðlÞL;

RðlÞU are the lower and upper bounds of the real parts of eigenvalues, respectively; and IðlÞL;
IðlÞU the lower and upper bounds of the imaginary parts of eigenvalues, respectively; RðlÞ0 and
IðlÞ0 the real and imaginary parts of eigenvalues of the system with deterministic parameters,
respectively. From Figs. 2–5, it can be seen that the relative errors will be large as the uncertainty
of parameters, y; increases. For instance, if y ¼ 0:01; the max relative error is 2:84204% at the
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Table 1

The upper and lower bounds of the real and imaginary parts of the eigenvalues of the closed-loop system with uncertain

parameters ðy ¼ 0:01Þ

Average Upper bounds Lower bounds Errors (%)

Rðl1;2Þ 	0:50000 	0:49729 	0:50271 1:08465
Iðl1;2Þ 1:51022 1:51664 1:50381 0:84943
Rðl3;4Þ 	0:50000 	0:49729 	0:50271 1:08465
Iðl3;4Þ 0:46821 0:47487 0:46156 2:84204

Table 2

The upper and lower bounds of the real and imaginary parts of the eigenvalues of the closed-loop system with uncertain

parameters ðy ¼ 0:05Þ

Average Upper bounds Lower bounds Errors (%)

Rðl1;2Þ 	0:50000 	0:48644 	0:51356 5:42326
Iðl1;2Þ 1:51022 1:54229 1:47815 4:24715
Rðl3;4Þ 	0:50000 	0:48644 	0:51356 5:42326
Iðl3;4Þ 0:46821 0:50148 0:43495 14:2102

S.H. Chen et al. / Journal of Sound and Vibration 276 (2004) 527–539536



imaginary part of the third and fourth eigenvalues; if y ¼ 0:05; the max relative error is 14:2102%
at the imaginary part of the third and fourth eigenvalues.

7. Conclusions

The vibration control of structures with uncertain parameters is discussed in this paper. The
control problem is approximated with the corresponding deterministic system. The uncertain
parameters are modelled to be a convex elliptical set rather than a probabilistic set. This does not
require the probabilistic distribution descriptions of the uncertain parameters. The formulas for
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estimating the upper and lower bounds of eigenvalues of the closed-loop system are derived using
the perturbation and optimal method. The results of the numerical example of a vibration system
show that the upper and lower bounds of eigenvalues of the closed-loop system are proportional
to y and the method presented in this paper is effective for dealing with the vibration control of
the uncertain systems. It should be noted that the present approach is limited to the case where the
uncertainties of the parameters of the systems are small, because the higher order terms of Eq. (7)
are neglected and the first order perturbation is used in Eq. (36). If the uncertainties of parameters
of systems are fair large, the second order terms in Eq. (7) and the second order perturbation
should be considered.
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